
Non-classical photon statistics for two-mode optical fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 5855

(http://iopscience.iop.org/0305-4470/29/18/016)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 04:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 5855–5872. Printed in the UK
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Abstract. The non-classical feature of sub-Poissonian photon statistics is extended from one- to
two-mode electromagnetic fields, incorporating the physically motivated property of invariance
under passive unitary transformations. Applications to squeezed coherent states, squeezed
thermal states, and superposition of coherent states are given. Dependences of extent of non-
classical behaviour on the independent squeezing parameters are graphically displayed.

1. Introduction

Non-classical properties and effects of radiation [1] have received considerable attention in
the past two decades and continue to be an active area of research. Quadrature squeezing [2],
sub-Poissonian photon statistics (SPS), and antibunching [3] of photons are three prominent
and independent examples of such properties leading to measurable effects. Quadrature
squeezing is related to the reduction of noise in one of the two quadrature components
below the coherent state value, and has been both theoretically and experimentally studied
for one-mode as well as multi-mode fields. Antibunching arises when the photon number
distribution becomes sub-Poissonian leading to anticorrelation in the photons detected in a
typical detection experiment. In all these cases, the diagonal coherent state description of
the fields involved does not have a classical interpretation and hence no classical description
can explain these effects.

The extension from one to two or more modes for the case of quadrature squeezing
is non-trivial and leads to new physical effects [4, 5]. The phenomenon of SPS has been
formulated [6] and observed [7] primarily for one-mode situations. For situations involving
two or more modes, in the existing literature, such properties are invariably studied for
one of the modes or a predefined linear combination of the modes [8]. Such an analysis
cannot be used to make any clear cut statement about the classical or non-classical nature of
the field involved, because the linear combination of modes which may show SPS may in
general be different from the mode chosen for the analysis. Another kind of generalization
of SPS to two-mode fields has been suggested using a particular inequality involving the
correlation between the two modes; however, this does not exhaust the possibilities available
at the level of quadratic expressions in photon number [9]. This clearly indicates the need
for a more satisfactory and comprehensive way of looking at non-classical statistics, for
fields involving two or more modes.
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Our aim in this paper is to develop a notion of SPS for two-mode fields which is
intrinsically two-mode in character, can be used in an unambiguous way to make a statement
about the classical or non-classical nature of the field, and has physically reasonable
invariance properties. The group of linear, homogeneous, canonical transformations
Sp(4,<), the symmetry group basic to the quantum mechanical description of the two-
mode field, naturally splits into two parts: the photon number conserving (maximal compact)
passive subgroupU(2), and the photon number non-conserving (non-compact) active part.
The maximal compact subgroupU(2), while acting on the Hilbert space of the two-
mode system through its unitary representation, is incapable of generating a non-classical
(classical) state starting from a classical (non-classical) one because the diagonal coherent
state distribution function is covariant under such transformations. Therefore, it is reasonable
to require that any signature of non-classicality for a two-mode system, in particular SPS,
be U(2) invariant. To achieve this we regard all modes related to the original ones by
passiveU(2) transformations as basically equivalent; then a survey of the SPS properties
for each mode in this equivalence class of modes leads to the formulation of aU(2) invariant
definition of SPS. We search over the set of all modes for that one which minimizes the
relevant parameter-measuring number fluctuation minus the mean. In this way, we arrive
at thatU(2) combination of the two modes which is most likely to be manifestly sub-
Poissonian. A much wider class of non-classical states can be explored using this formalism
compared to the earlier ways of handling two-mode situations.

The material in this paper is arranged as follows. In section 2 we recapitulate the
basic kinematics of two-mode systems and the action of the groupSp(4,<) on the non-
Hermitian annihilation and creation operators. The Hermitian generators of this action,
and the maximal compact subgroupU(2) ∈ Sp(4,<), are recorded. The notion ofU(2)-
invariant SPS is then developed by regarding all modes related to one another by (passive)
SU(2) transformations as equivalent, and by minimizing the variable one-modeQ parameter
over the set of all (normalized) modes. The algebraic machinery needed to carry this out,
for an arbitrary given state of the two-mode system, is set up. In section 3 we consider three
applications: squeezed coherent states, squeezed thermal states, and a general superposition
of two coherent states. In each case the analytic work is carried out as far as possible, and
then we resort to numerical studies which are graphically displayed. Section 4 contains
concluding remarks.

2. U (2) invariant definition of sub-Poissonian photon statistics for two-mode systems

We consider two orthogonal modes of the radiation field, their orthogonality being achievable
by their having different frequencies, orthogonal polarizations or different directions of
propagation. These modes can be quantum mechanically described by photon annihilation
operatorsar and corresponding photon creation operatorsa

†
r , where r = 1, 2. These

operators can be arranged as a column vectorξ (c):

ξ (c) = (ξ (c)s ) =


a1

a2

a
†
1

a
†
2

 s = 1, . . . ,4. (2.1)

The superscript(c) on ξ indicates that the entries here are complex, i.e. non-Hermitian. The
quadrature components of these operators, which are the Hermitian phase-space variables
q ’s andp’s, can be written as another column vector, related toξ (c) by a fixed numerical
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matrix�

ξ = (ξs) =


q1

q2

p1

p2

 = �−1ξ (c) � = (�−1)† = 1√
2


1 0 i 0
0 1 0 i
1 0 −i 0
0 1 0 −i

 . (2.2)

The canonical commutation relations obeyed by the creation and annihilation operators can
be written in terms ofξ or ξ (c):

[ξs, ξt ] = iβst

[ξ (c)s , ξ
(c)
t ] = βst

(βst ) =


0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

 .

(2.3)

A general real linear homogeneous transformation on theq ’s andp’s which preserves
these commutation relations is described by a 4× 4 real matrixS obeying the condition

SβST = β. (2.4)

This is the defining property for the elements of the non-compact groupSp(4,<)
Sp(4,<) = {S = 4 × 4 real matrix|SβST = β}. (2.5)

When ξ undergoes a transformation byS ∈ Sp(4,<), the non-Hermitian operatorsξ (c)

transform through a complex matrixS(c), obtained fromS by conjugation with�:

S ∈ Sp(4,<) ξ ′ = Sξ ⇒
ξ (c)′ = S(c)ξ (c)

S(c) = �S�†. (2.6)

The complex matricesS(c) are a faithful representation of the real matrix groupSp(4,<).
In this sense we will treat them as elements ofSp(4,<).

The maximal compact subgroupU(2) of Sp(4,<) can be identified as follows:

K ≡ U(2) = {S(c)(U) ∈ Sp(4,<)|U ∈ U(2)} ⊂ Sp(4,<)

S(c)(U) =
(
U 0
0 U?

)
.

(2.7)

The block diagonal form is responsible for the fact that such transformations do not mixa

anda†; in fact K is the largest sub-group with this property.
Let H be the Hilbert space on whichξ and ξ (c) act irreducibly. It follows from the

Stone–von Neumann theorem [10] that, since the canonical commutation and Hermiticity
relations are invariant under the transformation (2.6) for anyS(c) ∈ Sp(4,<), it is possible
to construct a unitary operatorU(S(c)) on H implementing (2.6) via conjugation:

S(c) ∈ Sp(4,<) : S(c)st ξ
(c)
t = U(S(c))−1ξ (c)s U(S(c))

U(S(c))†U(S(c)) = 1 on H.
(2.8)

The generators of the operatorsU(S(c)) are given by 10 independent, Hermitian, quadratic
expressions inar anda†

r . We define the four photon number-conserving generatorsJ0, Jj
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and the six photon number non-conserving generatorsKj , Lj , j = 1, 2, 3:

J0 = 1
2(N + 1) = 1

2(a
†
1a1 + a

†
2a2 + 1) (2.9a)

J1 = 1
2(a

†
1a2 + a

†
2a1)

J2 = 1
2i(a†

2a1 − a
†
1a2)

J3 = 1
2(a

†
1a1 − a

†
2a2)

(2.9b)

K1 = 1
4(a

†
1

2 + a2
1 − a

†
2

2 − a2
2)

K2 = − 1
4i(a†

1
2 − a2

1 + a
†
2

2 − a2
2)

K3 = − 1
2(a

†
1a

†
2 + a1a2)

(2.9c)

L1 = 1
4i(a†

1
2 − a2

1 − a
†
2

2 + a2
2)

L2 = 1
4(a

†
1

2 + a2
1 + a

†
2

2 + a2
2)

L3 = − 1
2i(a†

1a
†
2 − a1a2).

(2.9d)

These generators obey the commutation relations

[Jj , Jk] = iεjklJl [J0, Jj ] = 0 (2.10a)

[Jj ,Kk or Lk] = iεjkl(Kl or Ll) [J0,Kj ± iLj ] = ∓(Kj ± iLj) (2.10b)

[Kj,Kk] = [Lj , Lk] = −iεjklJl [Kj,Lk] = iδjkJ0. (2.10c)

From the above commutation relations, it is clear thatJ0 andJj form the algebra ofU(2)
and hence generate the unitary operators corresponding to the elements of the maximal
compact subgroupK of Sp(4,<). On the other hand,Kj and Lj are the generators of
the unitary operators corresponding to the non-compact elements ofSp(4,<) and they do
not form a closed algebra. These non-compact elements are recognized in the context of
quadrature squeezing to be the squeezing transformations and their complete classification
has been given elsewhere [4].

We now consider the notion of SPS for the physical states of a two-mode system. For
one-mode systems, such an analysis is based on Mandel’sQ parameter [6]

Q = 〈a†2a2〉 − 〈a†a〉2

〈a†a〉 (2.11)

wherea anda† are the annihilation and creation operators for the one-mode radiation field,
the expectation values being taken for the state of interest. TheQ parameter distinguishes
between physical states as having Poissonian, sub-Poissonian and super-Poissonian photon
statistics, asQ is 0,< 0 and> 0 for the above cases respectively. In particular, the states
with negativeQ are non-classical, in the sense that such a distribution can not be derived
from any classical statistical ensemble. Therefore, in this limited sense, theQ parameter
can be used to classify states as classical and non-classical. More precisely,Q < 0 (> 0) is
a sufficient (necessary) condition for non-classicality (classicality). We may note in passing
that the denominator inQ is chosen as a normalizing factor purely by convention, and in
all the preceding statements only the sign ofQ has been relevant.

For a situation involving two modes, the notion of SPS defined above is not adequate,
and needs to be suitably generalized. As it stands, one can analyse the photon statistics of
one of the modes, or a preselected linear combination of both. Then again, for a given state,
this mode which one chooses may not be the one in which the photon number distribution
may be non-classical. Hence the sign ofQ for a preselected mode may not disclose the
non-classical nature of the two-mode state, even if it is non-classical. This clearly indicates
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that an intrinsically two-mode notion of SPS, allowing for the possibility of forming all
possible normalized superpositions of the two modes, is required.

The standard way [1] of distinguishing classical from non-classical states (already
implicitly assumed in the above) is through the diagonal coherent state description. The
general two-mode coherent state with complex two-component displacementz̃ = (z1, z2) is
defined by

|z̃〉 = exp(z̃ · ã† − z̃? · ã)|0, 0〉
= exp(− 1

2|z1|2 − 1
2|z2|2) exp(z1a

†
1 + z2a

†
2)|0, 0〉. (2.12)

These are normalized states and form an over-complete set. A given two-mode density
operatorρ can be expanded in terms of them

ρ =
∫

d2z1 d2z2

π2
φ(z1, z2)|z1, z2〉〈z1, z2|. (2.13)

The unique normalized weight functionφ(z1, z2) gives the complete description of the two-
mode state and can in general be a distribution which is quite singular [11]. In the case
whenφ(z1, z2) can be interpreted as a probability distribution (i.e. it is non-negative and
is nowhere more singular than a delta function), equation (2.13) implies that the stateρ is
a classical mixture of coherent states which have a natural classical limit. Such quantum
states are referred to as classical; in contrast the others, for whichφ(z1, z2) either becomes
negative or more singular than a delta function somewhere, are defined as being non-
classical. This classification is general and can be done for any number of modes. In
particular, for the one-mode case, the states having negativeQ are a subset of the states
with non-classical diagonal coherent-state distribution functions. Here we may emphasize
that quadrature squeezing, SPS (and various other effects), are independent signatures of
non-classicality—a given state may show one and not the other, or neither, and yet be
non-classical, this showing up in some higher-order effects.

When the two-mode state, with density matrixρ, transforms under a unitary operator
corresponding to the compactU(2) subgroup of Sp(4,<), the distribution φ(z1, z2)

undergoes a point transformation given in terms of theU(2) matrix U ∈ U(2):
ρ ′ = U(S(c)(U))ρU(S(c)(U))−1 ⇔ φ′(z1, z2) = φ(z′

1, z
′
2)(

z′
1
z′

2

)
= U

(
z1

z2

)
.

(2.14)

Thus, underU(2) transformations classical states map on to classical ones and non-classical
states to non-classical ones; these transformations are incapable of generating a non-classical
state from a classical one. Therefore, it is reasonable to demand that any signature of non-
classicality be invariant under such transformations.

At this stage, we recapitulate and collect some interesting and important properties of
the maximal compact subgroupK of Sp(4,<).

(a) As is clear from equation (2.7), whenξ (c) undergoes aU(2) transformation, the
annihilation operatorsar ’s are not mixed with the creation operatorsa†

r ’s.
(b) The action of the elements ofU(2) (generated byJ0 and Jj ) on a state does not

change the total photon number or its distribution.
(c) The diagonal coherent state distribution function is covariant underU(2)

transformations.
(d) One requires only passive optical elements to experimentally implement anyU(2)

transformation on a state of the two-mode electromagnetic field [12].
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Motivated by the above considerations we now define an intrinsically two-mode and
U(2) invariant notion of SPS. For the purpose of our present analysis it is convenient to
write theU(2) transformed mode operators in terms of two column vectorsA andα:

A =
(
a1

a2

)
α =

(
α1

α2

)
(2.15)

whereα1 andα2 are complex numbers such that

U(α) =
(
α?1 α?2

−α2 α1

)
∈ SU(2) |α1|2 + |α2|2 = 1

U(α,ψ) =
(

α?1 α?2
−eiψα2 eiψα1

)
∈ U(2) 0 6 ψ 6 2π.

(2.16)

Whenξ (c) undergoes aU(2) transformation given byU(α,ψ), the annihilation and creation
operators for the transformed first mode can be written in terms ofA andα alone:

a(α) = α†A = α?1a1 + α?2a2

a(α)† = A†α = α1a
†
1 + α2a

†
2.

(2.17)

Thus the most general normalized ‘first mode’ after theU(2) transformation is determined
by SU(2) ∈ U(2) independent ofψ . This particular mode will henceforth be called the
SU(2) transformed mode, andα will be used to denote theSU(2) element involved.

Let ρ be the density matrix for any (pure or mixed) state of the two-mode radiation
field. Then we can define the following function:

Q(ρ;α) = 〈a(α)†2a(α)2〉ρ − 〈a(α)†a(α)〉2
ρ

〈A†A〉ρ
= Tr(ρa(α)†2a(α)2)− (Tr(ρa(α)†a(α)))2

Tr(ρA†A) (2.18)

which is similar to the MandelQ parameter for theSU(2) transformed modea(α). Here we
have chosen the normalizing denominator factor, which is essentially a matter of convention,
to beU(2) invariant, a natural requirement in the present context. When the stateρ is
transformed by the unitary operatorU(S(c)(U)) for someU ∈ U(2), the functionQ(ρ;α)
can be shown to change covariantly:

S(c)(U) ∈ K : ρ ′ = U(S(c)(U))ρU(S(c)(U))−1 ⇒
Q(ρ ′;α) = Q(ρ;α′) α′ = Uα.

(2.19)

Now an overall phase change corresponding to elements in theU(1) subgroup ofU(2)
actually leavesQ(ρ;α) unchanged, therefore no dependence onψ has been shown. So
we have the freedom of running over allα’s ∈ SU(2), i.e. we can choose various linear
combinations of the two modes involved, related to each other bySU(2) transformations.
Since we want to look for the signature of the non-classical nature (if present) as manifested
in the photon statistics, we varyα till we reach the minimum value of the functionQ(ρ;α):

Q(ρ) = Min
over all
α∈SU(2)

Q(ρ;α) = Q(ρ;α) s.t. Q(ρ;α) 6 Q(ρ;α). (2.20)

If Q(ρ) < 0 we shall conclude that the photon number distribution for the two-mode state
ρ is non-classical and sub-Poissonian, or amplitude squeezed. This is ourU(2) invariant
definition of SPS for states of two-mode fields. The mode in which the sub-Poissonian
nature is manifest to the maximum degree isa(α).
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We shall refer to the expressionQ(ρ;α) and its minimumQ(ρ) as the covariant and
the invariant Mandel parameters respectively, for the two-mode stateρ. We now develop
suitable formulae to handle theρ and α dependence ofQ(ρ;α). The numerator in our
definition of Q(ρ;α) consists of two terms, one arising from the expectation values of
quadratic expressions in the creation and annihilation operators and the other arising from
the expectation values of quartic terms. The quadratic term can be written:

Tr(ρa(α)†a(α)) = s + ũ · q̃
q̃ = q̃(α) = α†σ̃ α

(2.21)

with the dependence on the stateρ and onα ∈ SU(2) being clearly separated. The state-
dependent variabless and ũ transform underSU(2) like a scalar and a Cartesian vector
respectively, and can be evaluated from the equation

Tr(ρa†
s ar ) = sδrs + uj (σj )rs r, s = 1, 2 (2.22)

whereσ are the Pauli matrices. The term involving the expectation values of quartics inar

anda†
r can be written in terms of the non-compact generatorsK̃ and L̃ of Sp(4,<), and a

vector λ̃ representing theSU(2) element involved:

Tr(ρa(α)†
2

a(α)2) = 1
4λjλ

?
kHjk

Hjk = H?
kj = Tr(ρ(Kj − iLj)(Kk + iLk)) j, k = 1, 2, 3

λ̃ = λ̃(α) = −iαT σ2σ̃ α λ̃(α)λ̃(α) = 0.

(2.23)

The Hermitian matrixH can be written in terms of two real matrices, the real symmetric
R and real antisymmetricS, asH = R + iS. The matrixR transforms underSU(2) as a
second rank tensor whereas the matrixS can be represented by a Cartesian vectorṽ under
SU(2), related toS by vj = 1

2εjklSkl .

The denominator ofQ(ρ;α) is U(2) invariant since the operatorA†A = a
†
1a1 + a

†
2a2

is U(2) invariant; it does not depend uponα and can be written in terms ofs as

D(Q(ρ;α)) = Tr(ρA†A) = 2s. (2.24)

After some algebra, the complex vectorλ̃ can be eliminated in favour of the real vectorq̃,
andQ(ρ;α) can be written in terms of the state-dependent symmetric second-rank tensor
R, the vectorsũ, ṽ and the scalars as

Q(ρ;α) = Q(ρ; q̃(α)) = 1

8s
(TrR − qjqkRjk + 2ṽ · q̃ − 4(s + ũ · q̃)2). (2.25)

Using theU(2) covariance ofQ(ρ;α), we can assume without loss of generality that the
real symmetric matrixR is diagonal, and equation (2.25) then takes the simpler form

Q(ρ; q̃(α)) = 1

8s

(
TrR −

∑
j

q2
j Rjj + 2ṽ · q̃ − 4(s + ũ · q̃)2

)
. (2.26)

The dependence ofQ(ρ; q̃(α)) on α ∈ SU(2) is through the real unit vector̃q(α), which
can be represented on the surface of a unit sphere. In order to obtain the invariant Mandel
parameterQ(ρ) for a given two-mode state, we have to minimizeQ(ρ; q̃(α)) with respect
to q̃(α), the parametersR, ṽ, s, ũ being determined byρ. The most convenient coordinates
which one chooses on the surface of the sphere to carry out this minimization will depend
upon the physical stateρ under consideration.
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3. Application to two-mode squeezed coherent states, squeezed thermal states and
superposition of coherent states

In this section, we apply the formalism developed in section 2 to various interesting two-
mode states. Here we will see the relationship with the classification of two-mode squeezing
transformations given in [4].

3.1. The case of squeezed coherent states

The most general (quadrature) squeezed coherent state is obtained by applying the operator
U(k̃, l̃) = ei(k̃·K̃+l̃.L̃) to the two-mode coherent state|z1, z2〉 defined in equation (2.12),
for some complexz1, z2, where K̃ and L̃ are the non-compact generators ofSp(4,<)
defined in equation (2.9) and̃k and l̃ are real vectors. The operatorU(k̃, l̃) is conjugate to
U (0)(a, b) = exp i(aK2 + bL1) for somea > b > 0, via an operatorU(Sc(U)):

U(k̃, l̃) = U−1(S(c)(U))U (0)(a, b)U(S(c)(U))

U (0)(a, b) = exp

(
(a − b)

4
(a

†2

1 − a2
1)

)
exp

(
(a + b)

4
(a

†2

2 − a2
2)

)
.

(3.1)

Each U (0)(a, b) is a representative of an equivalence class of two-mode squeezing
transformations. Fora = b we have the essentially single mode case, while forb = 0 we
have maximal involvement of the two modes. For the minimization of theU(2) covariant
Q(ρ;α), the overallU(2) factorU−1(S(c)(U)) is irrelevant. Also, the action of the operator
U(S(c)(U)) on |z1, z2〉 transforms it into another coherent state|z′

1, z
′
2〉, with z′

1, z
′
2 related

to z1, z2 through the correspondingU(2) transformation. Thus it suffices to examine the
particular class of squeezed coherent states

|z1, z2, a, b〉 = U (0)(a, b)|z1, z2〉. (3.2)

A complete discussion of the two-mode squeezing transformations and squeezed states has
been given in [4].

The covariant Mandel parameterQ(z1, z2, a, b; q̃(α)) for theSU(2) transformed mode
for squeezed coherent states can be calculated by straightforward algebra and turns out to
be rather lengthy. The complete expression is given in the appendix (equation (A.1)), not so
much to burden the reader as to show the result in the physically important case of squeezed
coherent states.Q(z1, z2, a, b; q̃(α)) depends ona, b through hyperbolic functions and on
|z1|, |z2| through polynomial functions. Its dependence on the phases ofz1 andz2 and the
polar coordinates on the surface of the unit sphere describing the unit vectorq̃(α), is through
trigonometric functions and is oscillatory in nature. In order to obtain the invariant Mandel
parameterQ(ρ), this function has to be minimized with respect toq̃(α). Since this is not
possible analytically, the results obtained numerically are displayed in figures 1, 2 and 3†.

In each figure, we plot the minimum value ofQ(z1, z2, a, b; q̃(α)) as a function of the
squeeze factorsa andb, keeping the complex displacementsz1 and z2 fixed. Figure 1(a)
displays the results for the squeezed vacuum; this never shows SPS. Incidentally this
case already illustrates the independence of different signatures of non-classicality, since
quadrature squeezing is present but not SPS. The plots of figures 1(b)–(d) on the other hand
are obtained by varying the phase of one of the displacements (z2), keeping its magnitude
fixed, with the other displacement (z1) being zero. Different values for the phase of the
non-zero displacement give qualitatively different results; in particular when this phase is

† Note that the subfigures in each figure are not drawn to the same scale.
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Figure 1. Plots of the invariant Mandel parameterQ(ρ) for squeezed coherent states as a
function of squeeze parametersa andb. (a) The plot for squeezed vacuum, i.e.z1 = z2 = 0.
(b)–(d) The plots for|z1| = 0, |z2| = 3.0 and the phase ofz2 taking the values 0,π/4 andπ/2,
respectively.

π
2 , as is clear from figure 1(d) even some of the essentially single-mode states lying along
a = b show SPS. In figure 2 we choose equal magnitudes of displacements for the two
modes; plots have been generated for different values of their phases. The displacement
parameters in figure 3 are unequal in magnitude; four plots have been given for the same
choices of phase values as in the corresponding plots in figure 2. The qualitative features of
individual plots are similar to the corresponding plots in figure 2 though the actual values
of the invariant Mandel parameter are different.

We now make some general remarks about the results described above. In all the plots
of figures 1, 2 and 3, every point in the regionb > a can be mapped onto a corresponding
unique point in some regiona > b (which in general is not in the same figure), through that
U(2) transformation of the displacementsz1 andz2, which effectively changesU (0)(a, b) to
U (0)(b, a). Whenever the displacement parameters are invariant under this particularU(2)
transformation, the plot has a symmetry about the linea = b; as in all the plots of figure 1.
Such a symmetry is not exhibited by the plots of figures 2 and 3. In all the plots the invariant
Mandel parameter is zero or negative along the linea = b, i.e. for the subset of essentially
single-mode squeezed states. This happens because, even though the choice of displacement
parameters is such that the single mode which is squeezed has super-Poissonian statistics
(Q > 0), the minimization chooses the other mode which is in a coherent state(Q = 0).
Apart from the case of a squeezed vacuum (figure 1(a)) all other choices of displacement
show SPS for some values of the squeeze parametersa, b. When squeezing becomes large
in comparison to the displacement, and we are away from the linea = b, SPS disappears
and the states tend to become more and more super-Poissonian.
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Figure 2. Plots of the invariant Mandel parameterQ(ρ) for squeezed coherent states as a
function of squeeze parametersa andb for the case when the magnitudes of the displacements
in the two modes are equal:|z1| = |z2| = 2.0. The values of the phases ofz1 andz2 in (a)–(d)
are(0, 0), (0, π/4), (0, π/2) and(π/2, π/2), respectively.

3.2. The case of squeezed thermal states

We next look at the case of a two-mode isotropic thermal state subjected to squeezing.
The normalized density operator corresponding to the inverse temperatureβ = h̄ω/kT is
explicitly U(2) invariant and described in the Fock representation by

ρ0(β) = (1 − e−β)2 exp[−β(a†
1a1 + a

†
2a2)]

= (1 − e−β)2
∞∑

n1,n2=0

e−β(n1+n2)|n1, n2〉〈n1, n2| (3.3)

with U(2) invariance expressed by

eiθJ0ρ0(β)e
−iθJ0 = eiα·Jρ0(β)e

−iα·J = ρ0(β). (3.4)

Therefore it suffices to examine the properties of the density operator obtained by
conjugatingρ0(β) with U (0)(a, b)

ρ(β; a, b) = U (0)(a, b)ρ0(β)U (0)(a, b)−1. (3.5)

In contrast to the previous case, now the covariant Mandel parameterQ(β; a, b; q̃(α))
for the stateρ(β; a, b) is calculable by straightforward algebra:

Q(β; a, b; q̃(α)) = [(eβ − 1)(2(1 − eβ)+ 2(1 + eβ) cosh(2a) cosh(2b))]−1

×[ 1
4((1 − q2

3)(2(1 − eβ)2 + 4(1 − e2β) cosh(2a) cosh(2b)

+(1 + eβ)2(cosh(4a)+ cosh(4b)))



Non-classical photon statistics for two-mode optical fields 5865

Figure 3. Plots of the invariant Mandel parameterQ(ρ) for squeezed coherent states as a
function of squeeze parametersa andb for the case when the magnitudes of the displacements
in the two modes are unequal:|z1| = 2.0 and|z2| = 4.0. The values of the phases ofz1 andz2

in (a)–(d) are(0, 0), (0, π/4), (0, π/2) and(π/2, π/2), respectively.

+(1 + eβ)2(q1
2 − q2

2)(cosh(4a)− cosh(4b))

− 1
2(1 + q3

2)(10− 12eβ + 10e2β + 16(1 − e2β) cosh(2a) cosh(2b)

+6(1 + eβ)2 cosh(4a) cosh(4b)))

− 1
2((1 + eβ)q3(4 − 4eβ + 6(1 + eβ) cosh(2a) cosh(2b)) sinh(2a) sinh(2b))

− 1
2((2 − 2eβ + 2(−1 + e2β) cosh(2a) cosh(2b))

+((1 + eβ)q3 sinh(2a) sinh(2b)))2] (3.6)

hereq1, q2, q3 are the Cartesian components ofq̃ with q2
1 + q2

2 + q2
3 = 1.

The minimum value of the functionQ(β, a, b, q̃(α)), the parameterQ(ρ(β, a, b)), can
be calculated analytically. The stateρ(β, a, b) being the squeezed thermal stateis always
super-Poissonian. For a given temperature (givenβ) this super-Poissonian nature is least
for the case when only one mode is squeezed (a = b), increases as the squeezing becomes
increasingly two mode in nature, and finally is maximum when the state is maximally two-
mode squeezed, i.e. whena = 0 (b = 0) for a given b (a). When the temperature is
changed the states with higher temperatures (lowerβ) are more super-Poissonian compared
to the ones at lower temperatures (higherβ). Thus for fixeda andb, Q(β; a, b) increases
asβ decreases. The actual plots ofQ(ρ(β, a, b)) as a function ofa, b are given at different
temperatures in figure 4†.

† Note that the subfigures in each figure are not drawn to the same scale.
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Figure 4. Plots of the invariant Mandel parameterQ(ρ) for squeezed thermal states as a function
of squeeze parametersa andb at different inverse temperatures;β takes the values 0.5, 1.0, 2.0
and 4.0 in (a)–(d), respectively.

It is interesting to note that the particular mode for which the function
Q(ρ(β, a, b), q̃(α)) is minimum turns out to be one of the original modes, corresponding
to q3 = ±1. This happens because the thermal state density matrixρ0(β) is explicitly
U(2) invariant and the representative two-mode squeezing operatorU (0)(a, b) can be
factorized into two commuting operators, each pertaining to one of the original modes see
equation (3.1). In general, for a different choice of the representative operators, the minima
could occur at an arbitrarySU(2) transformed first mode. All the plots of figure 4 are
symmetric about the linea = b because of the explicitU(2) invariance of the thermal-state
density matrixρ0(β) (equation (3.4)).

3.3. The case of superposition of coherent states

Lastly we apply our formalism to the superposition of two two-mode coherent states. In
this case, no squeezing transformationU (0)(a, b) is involved. For simplicity we consider
only the case with real displacements.

A general superposition of two two-mode coherent states with real displacements and
a phase differenceη between them is given by

|ψ(u1, u2, v1, v2, r, η)〉 = 1

N
(|u1, u2〉 + r exp(iη)|v1, v2〉)

where

N2 = 1 + r2 + 2r cosη exp(− 1
2(u

2
1 + u2

2 + v2
1 + v2

2)+ u1v1 + u2v2). (3.7)
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With the help of aU(2) transformation, without any loss of generality we can setv2 = 0
and thus it suffices to study only the states|ψ(u1, u2, v1, 0, r, η)〉. The covariant Mandel
parameterQ(u1, u2, v1, r, η; q̃(α)) for this superposition of coherent states is given in terms
of the polar coordinatesθ andφ on the surface of the sphere representingq̃ as

Q(u1, u2, v1, r, η; q̃(α)) = [4(u2
1 + u2

2 + r2v2
1 + 2e− 1

2 (u
2
1+u2

2+v2
1)+u1v1ru1v1 cos(η))]−1

×
[
(1 + r2 + 2e− 1

2 (u
2
2+(u1−v1)

2)r cos(η))

×
(

4(u4
1 + r2v4

1) cos

(
θ

2

)4

+ 4u4
2 sin

(
θ

2

)4

+ 8u3
1u2 cos

(
θ

2

)2

cos(φ) sin(θ)

+8u1u
3
2 cos(φ) sin

(
θ

2

)2

sin(θ)+ 2u2
1u

2
2(2 + cos(2φ)) sin(θ)2

)
+r(e− 1

2 (u
2
2+(u1−v1)

2)(1 + r2)+ 2e−u2
2−(u1−v1)

2
r cos(η))

×
(

8u2
1v

2
1 cos

(
θ

2

)4

cos(η)+ 8u1u2v
2
1 cos

(
θ

2

)2

cos(η + φ) sin(θ)

+2u2
2v

2
1 cos(η + 2φ) sin(θ)2

)
−

(
2(u2

1 + r2v2
1) cos

(
θ

2

)2

+ 2u2
2 sin

(
θ

2

)2

+ 2u1u2 cos(φ) sin(θ)

+ 1
2e− 1

2 (u
2
2+2(u1−v1)

2)r

(
4u1v1 cos

(
θ

2

)2

cos(η)+ 2u2v1 cos(η + φ) sin(θ)

))2]
.

(3.8)

The minimum values of this function with respect toθ and φ have been computed
numerically and the results are shown in figure 5. Each plot in this figure contains two
curves showingQ(ρ) as a function of the relative phaseη corresponding to two different
values of relative weight factorr. The amount of SPS varies with the relative phase in a
similar way for all the plots. For all parameter values in all plotsQ(ρ) 6 0. This happens
because the most general superposition of two two-mode coherent states can be transformed
with the help of aU(2) transformation into a product state with one factor being a coherent
state, and the other a superposition of two one-mode coherent states

1

N
(|u′

1〉 + r exp(iη)|v′
1〉)|v′

2〉 = 1

N
U(S(c)(U))(|u1, u2〉 + r exp(iη)|v1, v2〉). (3.9)

Thus if Q(ρ;α) turns out to be nowhere negative, the minimization chooses thatU(2)
transformed mode which is in a coherent state.

It is interesting to point out that for a factorized two-mode state such as the expression
on the left-hand side of equation (3.9), the modea(α)which minimizesQ(ρ;α) is generally
neither of the two initial modes but a non-trivial combination of them.

4. Concluding remarks

The main aim of this paper has been to develop a specific signature of non-classicality for
two-mode states. Both quadrature squeezing and SPS are well-defined concepts for a single
mode. In this paper we have extended the notion of SPS to two modes by showing how to
choose the appropriate single mode which shows SPS to the maximum extent, considering
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Figure 5. Plots of invariant Mandel parameterQ(ρ) for superposition of two two-mode coherent
states as a function of the phase difference between the two states are shown for two different
values of relative weight,r = 0.5 and r = 1.0, and a given set of displacements. Values of
displacementsu1, u2 andv2 are(0.5, 0.5, 1.0), (0.5, 1.0, 1.0), (1.5, 1.0, 1.0) and(1.5, 1.0, 0.5)
for (a)–(d), respectively.

all modes related to each other by passiveU(2) transformations as equivalent. A similar
treatment of quadrature squeezing has been given elsewhere.

We would like to comment briefly on the role played by the choice of the denominator
of Q(ρ;α). Any choice which is everywhere non-negative will not change the qualitative
results obtained from the minimization ofQ(ρ;α), i.e. the super- or sub-Poissonian nature
of the stateρ. However, the extent of SPS, and the location of the most non-classical mode,
depend upon the exact choice one makes for the denominator. To illustrate this point we
choose the two-mode Fock state|n1, n2〉. The covariant Mandel parameter is given by

Q(n1, n2, q̃(α)) = 1

4(n1 + n2)
(−2(n1 + n2)+ (n1 + n2)

2 + (n1(1 − n1)+ n2(1 − n2))

×(q1
2 + q2

2)− 2(n1 − n2)q3 − (n1 + n2)
2q2

3). (4.1)

This function reaches its minimum atq3 = +1 with minimum value− n1
n1+n2

for n1 > n2
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and atq3 = −1 with the minimum value− n2
n1+n2

for n2 > n1. Thus for ourU(2) invariant

choice of the denominator Tr(ρA†A), for a Fock state, the mode with the larger number
of photons is more non-classical. On the other hand if one chooses theU(2) covariant
denominator Tr(ρa(α)†a(α)), for a Fock state, both the modes are equally non-classical
irrespective of the number of photons present in each mode: the minimum value of this
alternatively defined parameter is−1 for each mode. However, as explained in section 2,
the choice we have made for the denominator factor inQ(ρ;α) seems more natural keeping
in mind the kinematic aspects of the problem.

We may emphasize once again that quadrature squeezing and SPS are independent
features of non-classicality, with the possibility in a given stateρ of only one of them
showing up and not the other. In that sense, therefore, the identification of a ‘most non-
classical mode’ definitely depends on whether one is looking at quadrature or amplitude
squeezing, and in general the two may not agree at all. In any case, a complete treatment
of the multimode quadrature squeezing problem, incorporating invariance under all passive
mixing of modes, has been presented elsewhere. The main aim of the present investigation
has been to attempt a treatment of amplitude squeezing in a similar spirit.

For one-mode fields the Mandel parameter can be written as a function of the number
operatora†a and hence is determined by (the moments of) the photon number distribution.
In contrast, for two-mode fields the Mandel parameter for theSU(2) transformed mode
cannot be expressed as a function of the number operatorsa

†
1a1 anda†

2a2 and therefore is
not determined by the photon number distributions in the original modes. There could be
other signatures of non-classicality which are meaningful at the one-mode level and can be
extended in the spirit of this paper to more than one mode. In contrast, it will be interesting
to explore the possibility of having signatures of non-classicality which are not definable
at the one-mode level at all, but are present only at the two-mode level. These will be
presented elsewhere.

Appendix

We give here the functionQ(z1, z2, a, b;α) for the squeezed coherent state withz1 = ueiϕu

andz2 = veiϕv . The first term is the denominator, followed by the numerator terms arranged
according to their dependence ona and b. First the terms independent ofa, b appear,
followed by the ones depending upona or b alone, and then the ones depending on botha

andb. The last three terms originate from quadratic expressions of creation and annihilation
operators and are not arranged.

Q(α; z1, z2, a, b) = 2[−2 + cosh(2(a − b))+ 2u2 cosh(2(a − b))+ cosh(2(a + b))

+2v2 cosh(2(a + b))+ 2u2 cos(2ϕu) sinh(2(a − b))

+2v2 cos(2ϕv) sinh(2(a + b))]−1

×

 1
8(5 + u4 + v4 + 2(u2 + v2))+ 1

8(v
4 cos(4ϕv)(−1 + cos(θ)))

+ 1
8((u

2 − v2)(2 + u2 + v2) cos(θ))− 1
8(u

4 cos(4ϕu)(1 + cos(θ)))

− 1
16((1 + u2(2 + u2 − u2 cos(4ϕu))+ v2(2 + v2 − v2 cos(4ϕv))) sin(θ)2)
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+1

4

uv cosh(2a)


−8 cos(φ) cos(ϕu − ϕv)− (2 + u2 + v2

+(u2 − v2) cos(θ)) sin(φ) sin(ϕu − ϕv)

−u2(1 + cos(θ)) sin(φ) sin(3ϕu + ϕv)

+v2(1 − cos(θ)) sin(φ) sin(ϕu + 3ϕv)


 sin(θ)

+1

4

uv


−8 cos(φ) cos(ϕu + ϕv)

−(u2 − v2 + (2 + u2 + v2) cos(θ))
× sin(φ) sin(ϕu + ϕv)

−v2(1 − cos(θ)) sin(φ) sin(ϕu − 3ϕv)
−u2(1 + cos(θ)) sin(φ) sin(3ϕu − ϕv)

 sin(θ) sinh(2a)



+1

4

uv cosh(−2b)


8 sin(φ) sin(ϕu − ϕv) sin(θ)

+ cos(φ) cos(ϕu − ϕv)

×(2 + u2 + v2 + (u2 − v2) cos(θ))
− cos(φ)2u2 cos(3ϕu + ϕv) cos( θ2)

2

−2v2 cos(φ) cos(ϕu + 3ϕv)
× sin( θ2)

2 sin(θ)





+1

4

uv

v2 cos(φ) cos(ϕu − 3ϕv)(−1 + cos(θ))

+u2 cos(φ) cos(3ϕu − ϕv)(1 + cos(θ))
− cos(φ) cos(ϕu + ϕv)(u

2 − v2

+(2 + u2 + v2) cos(θ))
−8 sin(φ) sin(ϕu + ϕv)

 sin(θ) sinh(−2b)


+ 1

8(3 + 12u2 + 6u4 + 2u4 cos(4ϕu)) cos

(
θ

2

)4

cosh(4(a − b))

+ 1
8(3 + 12v2 + 6v4 + 2v4 cos(4ϕv)) cosh(4(a + b)) sin

(
θ

2

)4

+1

2

(
u2(3 + 2u2) cos(2ϕu) cos

(
θ

2

)4

sinh(4(a − b))

)
+1

2

(
v2(3 + 2v2) cos(2ϕv) sin

(
θ

2

)4

sinh(4(a + b))

)
+ cosh(2(a − b))

(
−

(
(1 + 2u2) cos

(
θ

2

)2)
+u

2v2 cos(2ϕu) sin(2φ) sin(2ϕv) sin(θ)2

2

)
+ cosh(2(a − b))

(
−

(
(1 + 2v2) sin

(
θ

2

)2)
−u

2v2 cos(2ϕv) sin(2φ) sin(2ϕu) sin(θ)2

2

)
+

(
−(u2 cos(2ϕu)(1 + cos(θ)))+ (1 + 2u2)v2 sin(2φ) sin(2ϕv) sin(θ)2

4

)
× sinh(2(a − b))

+
(
v2 cos(2ϕv)(−1 + cos(θ))− u2(1 + 2v2) sin(2φ) sin(2ϕu) sin(θ)2

4

)
× sinh(2(a − b))

+ 1
4(((1 + 2u2)(1 + 2v2)+ 2u2v2 cos(2φ) cos(2ϕu)
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× cos(2ϕv)) cosh(2(a − b)) cosh(2(a − b)) sin(θ)2)

+ 1
8((4u

2(1 + 2v2) cos(2ϕu)+ 2(1 + 2u2)v2 cos(2φ) cos(2ϕv))

× cosh(2(a − b)) sin(θ)2 sinh(2(a − b)))

+ 1
8(((1 + 2u2)(1 + 2v2) cos(2φ)+ 8u2v2 cos(2ϕu) cos(2ϕv))

× sin(θ)2 sinh(2(a − b)) sinh(2(a − b)))

+ 1
8((2u

2(1 + 2v2) cos(2φ) cos(2ϕu)+ 4(1 + 2u2)v2 cos(2ϕv))

× cosh(2(a − b)) sin(θ)2 sinh(2(a − b)))

+1

2

(
uv cos(φ)(3(1 + u2) cos(ϕu − ϕv)+ u2 cos(3ϕu + ϕv))

× cos

(
θ

2

)2

cosh(2(2a − b)) sin(θ)

)
+1

2

(
uv cos(φ)(u2 cos(3ϕu − ϕv)+ 3(1 + u2) cos(ϕu + ϕv))

× cos

(
θ

2

)2

sin(θ) sinh(2(2a − b))

)
+1

2

(
uv cos(φ)(3(1 + v2) cos(ϕu − ϕv)+ v2 cos(ϕu + 3ϕv))

× cosh(2(2a + b)) sin

(
θ

2

)2

sin(θ)

)
+1

2

(
uv cos(φ)(v2 cos(ϕu − 3ϕv)+ 3(1 + v2) cos(ϕu + ϕv))

× sin

(
θ

2

)2

sin(θ) sinh(2(2a + b))

)
+1

2

(
uv cos

(
θ

2

)2

sin(φ)(−(u2 sin(3ϕu − ϕv))

+3(1 + u2) sin(ϕu + ϕv)) sin(θ) sinh(2(a − 2b))

)
+1

2

(
uv sin(φ)(v2 sin(ϕu − 3ϕv)+ 3(1 + v2) sin(ϕu + ϕv))

× sin

(
θ

2

)2

sin(θ) sinh(−2(a + 2b))

)
−1

2

(
uv cosh(−2(a + 2b)) sin(φ)(3(1 + v2) sin(ϕu − ϕv)

+v2 sin(ϕu + 3ϕv)) sin

(
θ

2

)2

sin(θ)

)
+1

2

(
uv cos

(
θ

2

)2

cosh(2(a − 2b)) sin(φ)

×(−3(1 + u2) sin(ϕu − ϕv)+ u2 sin(3ϕu + ϕv)) sin(θ)

)
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+ 1
2(u

2v2 cos(2φ) sin(2ϕu) sin(2ϕv)sin(θ)2)−
[

− 1

2

+ (1 + cos(θ))((1 + 2u2) cosh(2(a − b))+ 2u2 cos(2ϕu) sinh(2(a − b)))

4

]
+ (1 − cos(θ))((1 + 2v2) cosh(2(a − b))+ 2v2 cos(2ϕv) sinh(2(a − b)))

4

+ uv sin(θ)


sin(φ)(cosh(−2b) sin(ϕu − ϕv)

− sin(ϕu + ϕv) sinh(−2b))
+ cos(φ)(cos(ϕu − ϕv) cosh(2a)

+ cos(ϕu + ϕv) sinh(2a))




2
 . (A.1)
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