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Abstract. The non-classical feature of sub-Poissonian photon statistics is extended from one- to
two-mode electromagnetic fields, incorporating the physically motivated property of invariance
under passive unitary transformations. Applications to squeezed coherent states, squeezed
thermal states, and superposition of coherent states are given. Dependences of extent of non-
classical behaviour on the independent squeezing parameters are graphically displayed.

1. Introduction

Non-classical properties and effects of radiation [1] have received considerable attention in
the past two decades and continue to be an active area of research. Quadrature squeezing [2],
sub-Poissonian photon statistics (SPS), and antibunching [3] of photons are three prominent
and independent examples of such properties leading to measurable effects. Quadrature
squeezing is related to the reduction of noise in one of the two quadrature components
below the coherent state value, and has been both theoretically and experimentally studied
for one-mode as well as multi-mode fields. Antibunching arises when the photon number
distribution becomes sub-Poissonian leading to anticorrelation in the photons detected in a
typical detection experiment. In all these cases, the diagonal coherent state description of
the fields involved does not have a classical interpretation and hence no classical description
can explain these effects.

The extension from one to two or more modes for the case of quadrature squeezing
is non-trivial and leads to new physical effects [4,5]. The phenomenon of SPS has been
formulated [6] and observed [7] primarily for one-mode situations. For situations involving
two or more modes, in the existing literature, such properties are invariably studied for
one of the modes or a predefined linear combination of the modes [8]. Such an analysis
cannot be used to make any clear cut statement about the classical or non-classical nature of
the field involved, because the linear combination of modes which may show SPS may in
general be different from the mode chosen for the analysis. Another kind of generalization
of SPS to two-mode fields has been suggested using a particular inequality involving the
correlation between the two modes; however, this does not exhaust the possibilities available
at the level of quadratic expressions in photon number [9]. This clearly indicates the need
for a more satisfactory and comprehensive way of looking at non-classical statistics, for
fields involving two or more modes.
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Our aim in this paper is to develop a notion of SPS for two-mode fields which is
intrinsically two-mode in character, can be used in an unambiguous way to make a statement
about the classical or non-classical nature of the field, and has physically reasonable
invariance properties. The group of linear, homogeneous, canonical transformations
Sp(4,N), the symmetry group basic to the quantum mechanical description of the two-
mode field, naturally splits into two parts: the photon humber conserving (maximal compact)
passive subgroup/(2), and the photon number non-conserving (hon-compact) active part.
The maximal compact subgroufi(2), while acting on the Hilbert space of the two-
mode system through its unitary representation, is incapable of generating a non-classical
(classical) state starting from a classical (non-classical) one because the diagonal coherent
state distribution function is covariant under such transformations. Therefore, it is reasonable
to require that any signature of non-classicality for a two-mode system, in particular SPS,
be U(2) invariant. To achieve this we regard all modes related to the original ones by
passiveU (2) transformations as basically equivalent; then a survey of the SPS properties
for each mode in this equivalence class of modes leads to the formulatidii @ anvariant
definition of SPS. We search over the set of all modes for that one which minimizes the
relevant parameter-measuring number fluctuation minus the mean. In this way, we arrive
at that U (2) combination of the two modes which is most likely to be manifestly sub-
Poissonian. A much wider class of non-classical states can be explored using this formalism
compared to the earlier ways of handling two-mode situations.

The material in this paper is arranged as follows. In section 2 we recapitulate the
basic kinematics of two-mode systems and the action of the gfpug, i) on the non-
Hermitian annihilation and creation operators. The Hermitian generators of this action,
and the maximal compact subgrotf{2) € Sp(4, ), are recorded. The notion @f (2)-
invariant SPS is then developed by regarding all modes related to one another by (passive)
SU (2) transformations as equivalent, and by minimizing the variable one-r@qoierameter
over the set of all (normalized) modes. The algebraic machinery needed to carry this out,
for an arbitrary given state of the two-mode system, is set up. In section 3 we consider three
applications: squeezed coherent states, squeezed thermal states, and a general superposition
of two coherent states. In each case the analytic work is carried out as far as possible, and
then we resort to numerical studies which are graphically displayed. Section 4 contains
concluding remarks.

2. U(2) invariant definition of sub-Poissonian photon statistics for two-mode systems

We consider two orthogonal modes of the radiation field, their orthogonality being achievable
by their having different frequencies, orthogonal polarizations or different directions of
propagation. These modes can be quantum mechanically described by photon annihilation
operatorsa, and corresponding photon creation operatm?s wherer = 1,2. These
operators can be arranged as a column vegtor

ay
az
ay

:
)

£O = (£9) = s=1,...,4 2.1

The superscriptc) on & indicates that the entries here are complex, i.e. non-Hermitian. The
guadrature components of these operators, which are the Hermitian phase-space variables
g's and p’s, can be written as another column vector, relategtbby a fixed numerical
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matrix
q1 10 i O
_ _ 1 01 O i
_ _|1 22| _ 1s(c) _ Nt
E=@)=| =97 e=@N'=7511 o 5 o 2.2)
D2 01 0 —i

The canonical commutation relations obeyed by the creation and annihilation operators can
be written in terms of or £©:

(6. 861 =By

69,61 = B
0 0 1 0 (2.3)
0O 0 01
0O -1 00

A general real linear homogeneous transformation ongteeand p’s which preserves
these commutation relations is described by a 4} real matrixS obeying the condition

SBST = B. (2.4)
This is the defining property for the elements of the non-compact gspup, i)
Sp(4, M) = {S = 4 x 4 real matrix|SgST = ). (2.5)

When £ undergoes a transformation iy € Sp(4, %), the non-Hermitian operators©
transform through a complex matri¢¢, obtained fromS by conjugation withQ:

S € Sp(4, ) g =5=
E(C)/ — S(C)E(C)
$© =Qsaf. (2.6)

The complex matrices© are a faithful representation of the real matrix grafyp4, ).
In this sense we will treat them as elementsSp{4, N).
The maximal compact subgroup(2) of Sp(4, i) can be identified as follows:

K=U@®R) ={S9U) € Sp(4 N)|U € U(2)} C Sp(4, R)

@ _ (U O (2.7)
S (U)_<o U*>.

The block diagonal form is responsible for the fact that such transformations do nat mix
anda'; in fact K is the largest sub-group with this property.

Let H be the Hilbert space on which and £© act irreducibly. It follows from the
Stone—von Neumann theorem [10] that, since the canonical commutation and Hermiticity
relations are invariant under the transformation (2.6) for &fiye Sp(4, %), it is possible
to construct a unitary operatdf(S©) on H implementing (2.6) via conjugation:

S e Sp(4, M) 1 SVE =USO)TEOUS)

2.8
USNHTUSO) =1 onH. (28)

The generators of the operatdrgS©) are given by 10 independent, Hermitian, quadratic
expressions i, anda,. We define the four photon number-conserving generaigrd;
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and the six photon number non-conserving generakorsL;, j =1, 2, 3:
Jo=i(N+1) = Lajas + abar + 1) (2.9)
J1= %(aiaz + agal)
Jo= %i(a;al - aiaz) (2.%)
J3 = %(aial — a;ag)

Kl = %(Cl;{z —}—a% — a;z - ag)

K> = —lei(aiz—af—}—azz—a%) (2.9%0)
K3 = —}(ala} + aray)
L= lei(ai2 - af - a;z + a%)
Ly = zll(aiz +d? + al? + ad) (2.9d)
Lz = —%i(aiag — aiaz).
These generators obey the commutation relations
Ui, Il =l€judi [Jo. /1 =0 (2.1()
[J;, K or L] =i€ju(K; or L;) [Jo, K; £iL;] = F(K; £iL;) (2.1M)
[Kj, Ki] =[L;j, L] = —i€jud; [K;, Li] = i8x Jo. (2.1x)

From the above commutation relations, it is clear thatnd J; form the algebra ot/ (2)
and hence generate the unitary operators corresponding to the elements of the maximal
compact subgrougC of Sp(4,9). On the other handK; and L; are the generators of
the unitary operators corresponding to the non-compact elemesig(df %) and they do
not form a closed algebra. These non-compact elements are recognized in the context of
guadrature squeezing to be the squeezing transformations and their complete classification
has been given elsewhere [4].

We now consider the notion of SPS for the physical states of a two-mode system. For
one-mode systems, such an analysis is based on Marn@gdarameter [6]

(aTzaz) — (aTa)2
(ata)

wherea anda' are the annihilation and creation operators for the one-mode radiation field,
the expectation values being taken for the state of interest. 'parameter distinguishes
between physical states as having Poissonian, sub-Poissonian and super-Poissonian photon
statistics, agQ is 0, < 0 and> O for the above cases respectively. In particular, the states
with negativeQ are non-classical, in the sense that such a distribution can not be derived
from any classical statistical ensemble. Therefore, in this limited sense&) tharameter

can be used to classify states as classical and non-classical. More pre@isel§,(> 0) is

a sufficient (necessary) condition for non-classicality (classicality). We may note in passing
that the denominator i is chosen as a normalizing factor purely by convention, and in

all the preceding statements only the sign@has been relevant.

For a situation involving two modes, the notion of SPS defined above is not adequate,
and needs to be suitably generalized. As it stands, one can analyse the photon statistics of
one of the modes, or a preselected linear combination of both. Then again, for a given state,
this mode which one chooses may not be the one in which the photon number distribution
may be non-classical. Hence the sign @ffor a preselected mode may not disclose the
non-classical nature of the two-mode state, even if it is non-classical. This clearly indicates

0= (2.11)
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that an intrinsically two-mode notion of SPS, allowing for the possibility of forming all
possible normalized superpositions of the two modes, is required.

The standard way [1] of distinguishing classical from non-classical states (already
implicitly assumed in the above) is through the diagonal coherent state description. The
general two-mode coherent state with complex two-component displacéreetd;, z»2) is
defined by

12) =exp-a' —z*-a)|0,0)
= exp(— 31z1f? — 3122/%) exp(zaa) + z2a})[0, 0). (2.12)

These are normalized states and form an over-complete set. A given two-mode density
operatorp can be expanded in terms of them

d?zy 2z
p= / — 7 oG )l @ . (2.13)

The unique normalized weight functia(zs, z2) gives the complete description of the two-
mode state and can in general be a distribution which is quite singular [11]. In the case
when ¢(z1, z2) can be interpreted as a probability distribution (i.e. it is non-negative and
is nowhere more singular than a delta function), equation (2.13) implies that theoState
a classical mixture of coherent states which have a natural classical limit. Such quantum
states are referred to as classical; in contrast the others, for wliighz,) either becomes
negative or more singular than a delta function somewhere, are defined as being non-
classical. This classification is general and can be done for any number of modes. In
particular, for the one-mode case, the states having negétiaee a subset of the states
with non-classical diagonal coherent-state distribution functions. Here we may emphasize
that quadrature squeezing, SPS (and various other effects), are independent signatures of
non-classicality—a given state may show one and not the other, or neither, and yet be
non-classical, this showing up in some higher-order effects.

When the two-mode state, with density matgix transforms under a unitary operator
corresponding to the compadt (2) subgroup of Sp(4, %), the distribution ¢ (z1, z2)
undergoes a point transformation given in terms of th@) matrix U € U (2):

o' =USOWUNpUSO U & ¢ (21, 22) = ¢(24, 25)

(?) :U<§1>. (2.14)
2 2

Thus, undel (2) transformations classical states map on to classical ones and non-classical
states to non-classical ones; these transformations are incapable of generating a non-classical
state from a classical one. Therefore, it is reasonable to demand that any signature of non-
classicality be invariant under such transformations.

At this stage, we recapitulate and collect some interesting and important properties of
the maximal compact subgroup of Sp(4, N).

(@) As is clear from equation (2.7), whext undergoes &/ (2) transformation, the
annihilation operatora,’s are not mixed with the creation operatasss.

(b) The action of the elements @&f(2) (generated by/y and J;) on a state does not
change the total photon number or its distribution.

(c) The diagonal coherent state distribution function is covariant undé?)
transformations.

(d) One requires only passive optical elements to experimentally implement/ é2)y
transformation on a state of the two-mode electromagnetic field [12].
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Motivated by the above considerations we now define an intrinsically two-mode and
U (2) invariant notion of SPS. For the purpose of our present analysis it is convenient to
write the U (2) transformed mode operators in terms of two column vectbend «:

A= (Zi) o= <z;> (2.15)

wherew; anda, are complex numbers such that

U) = ( - j‘f) €SU@  leaf + el =1
—Q2 1
(2.16)

*

o o

U(ot,l/f)=<_é¢}a2 é‘pf)tl)EU(z) 0< ¥ < 2r.

When&© undergoes & (2) transformation given by («, ¥), the annihilation and creation
operators for the transformed first mode can be written in term4 ahd« alone:
al@) =a' A =aotar + bay
! 2 (2.17)

a(@) = Ala = ara] + azal.

Thus the most general normalized ‘first mode’ after the) transformation is determined
by SU(2) € U(2) independent ofy. This particular mode will henceforth be called the
SU (2) transformed mode, and will be used to denote th8U (2) element involved.

Let o be the density matrix for any (pure or mixed) state of the two-mode radiation
field. Then we can define the following function:

(a(e)Pa(@)?), — (a(@)a(@))?
(AfA),
_ Tr(pa(e)?a(@)?) — (Tr(pa(e)'a(@)))?
o Tr(pAfA)
which is similar to the Mandep parameter for th&U (2) transformed mode(«). Here we
have chosen the normalizing denominator factor, which is essentially a matter of convention,
to be U(2) invariant, a natural requirement in the present context. When the stige

transformed by the unitary operatbi(S© (U)) for someU e U (2), the functionQ(p; o)
can be shown to change covariantly:

SOW) e K p' =USOWUNpUS W) =

Q) = Q(p; ) o =Ua.
Now an overall phase change corresponding to elements i{i¢ subgroup ofU(2)
actually leavesQ(p; @) unchanged, therefore no dependenceyomas been shown. So
we have the freedom of running over alls € SU(2), i.e. we can choose various linear
combinations of the two modes involved, related to each othesy2) transformations.
Since we want to look for the signature of the non-classical nature (if present) as manifested
in the photon statistics, we vatytill we reach the minimum value of the functia®(p; «):

Q(p) = Min Q(p;a) = Q(p; @) st. Q(p; @) < Q(p; ). (2.20)

over all
aeSU(2)

O(p;a) =

(2.18)

(2.19)

If O(p) < 0 we shall conclude that the photon number distribution for the two-mode state
p is non-classical and sub-Poissonian, or amplitude squeezed. This $(Buinvariant
definition of SPS for states of two-mode fields. The mode in which the sub-Poissonian
nature is manifest to the maximum degree {&).
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We shall refer to the expressiaid(p; «) and its minimumQ(p) as the covariant and
the invariant Mandel parameters respectively, for the two-mode gtai®e now develop
suitable formulae to handle the and @ dependence oD (p; ). The numerator in our
definition of Q(p; @) consists of two terms, one arising from the expectation values of
guadratic expressions in the creation and annihilation operators and the other arising from
the expectation values of quartic terms. The quadratic term can be written:

Tr(pa(@)fa@) =s+i-g

| (p~( )'a( ))~ q (2.21)
j=q) =a'éa

with the dependence on the stateand ona € SU(2) being clearly separated. The state-

dependent variables and i transform undeiSU (2) like a scalar and a Cartesian vector

respectively, and can be evaluated from the equation

Tr(pa:a,) = 88,5 + 1uj(0))rs rs=12 (2.22)

whereo are the Pauli matrices. The term involving the expectation values of quartigs in
anda, can be written in terms of the non-compact generatorand L of Sp(4, %), and a
vector )\ representing th&U (2) element involved:

Tr(pa(@) a(@?) = Laa; Hy
[{jk:lej =Tr(p(K, —|LJ)(Kk+|Lk)) j,k:l, 2,3 (223)
* =) = —ia o050 M)A () = 0.

The Hermitian matrixH can be written in terms of two real matrices, the real symmetric
R and real antisymmetri§, asH = R +iS. The matrixR transforms undeSU (2) as a
second rank tensor whereas the maffigan be represented by a Cartesian veétander
SU(2), related toS by v; = J€ Su-

The denominator of2(p; ) is U(2) invariant since the operatod’.A = aIal + a;ag
is U(2) invariant; it does not depend upanand can be written in terms ofas

D(Q(p; @) = Tr(pATA) = 2. (2.24)

After some algebra, the complex vectocan be eliminated in favour of the real vectar
and Q(p; @) can be written in terms of the state-dependent symmetric second-rank tensor
R, the vectorsi, v and the scalar as

1
Q(p; ) = Q(p; g()) = g(TFR — qjqr Rk + 20 -G — 4(s + i - §)?). (2.25)

Using theU (2) covariance ofQ(p; a), we can assume without loss of generality that the
real symmetric matrixR is diagonal, and equation (2.25) then takes the simpler form

1
0uia@) = g (TR PRy +20- G- 46 +7-72).  (@260)
J

The dependence ad(p; g(«)) on o € SU(2) is through the real unit vectaf(«), which

can be represented on the surface of a unit sphere. In order to obtain the invariant Mandel
parameterQ(p) for a given two-mode state, we have to minimi@ép; g («)) with respect

to g(a), the parameter®, v, s, i being determined by. The most convenient coordinates
which one chooses on the surface of the sphere to carry out this minimization will depend
upon the physical state under consideration.
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3. Application to two-mode squeezed coherent states, squeezed thermal states and
superposition of coherent states

In this section, we apply the formalism developed in section 2 to various interesting two-
mode states. Here we will see the relationship with the classification of two-mode squeezing
transformations given in [4].

3.1. The case of squeezed coherent states

The most general (quadrature) squeezed coherent state is obtained by applying the operator
Uk, ) = d*&K+LL) o the two-mode coherent statey, zo) defined in equation (2.12),

for some complexzi, zo, where K and L are the non-compact generators £y(4, %)

defined in equation (2.9) aridand! are real vectors. The operatik, [) is conjugate to

U (a, b) = expi(aKo + bL1) for somea > b > 0, via an operatot/(S¢(U)):

Uk, D) =USQOONUO (a, UGS (U))

—_ 12 12 31
U, b) = exp<(“4b)(a{ - af)) exp(@(@ — a§)> . @1

Each 4@ (a, b) is a representative of an equivalence class of two-mode squeezing
transformations. For = b we have the essentially single mode case, whilebfer 0 we

have maximal involvement of the two modes. For the minimization ofifti2) covariant

0(p; @), the overallU (2) factort/~1(S© (U)) is irrelevant. Also, the action of the operator
USOU)) on |z1, z2) transforms it into another coherent staté, z5), with z7, z, related

to z1, z2 through the corresponding (2) transformation. Thus it suffices to examine the
particular class of squeezed coherent states

|21, 22, @, b) = U (a, b)|z1, 22). (3.2)

A complete discussion of the two-mode squeezing transformations and squeezed states has
been given in [4].

The covariant Mandel parameté(z1, z», a, b; g(«)) for the SU (2) transformed mode
for squeezed coherent states can be calculated by straightforward algebra and turns out to
be rather lengthy. The complete expression is given in the appendix (equation (A.1)), not so
much to burden the reader as to show the result in the physically important case of squeezed
coherent statesQ(z1, z2, a, b; g(a)) depends om, b through hyperbolic functions and on
|z1l, 1z2] through polynomial functions. Its dependence on the phases afdz, and the
polar coordinates on the surface of the unit sphere describing the unit yéejois through
trigonometric functions and is oscillatory in nature. In order to obtain the invariant Mandel
parameterQ(p), this function has to be minimized with respectdg@r). Since this is not
possible analytically, the results obtained numerically are displayed in figures 1, 2rand 3

In each figure, we plot the minimum value &(z1, z2, a, b; g(«)) as a function of the
squeeze factors and b, keeping the complex displacementsand z, fixed. Figure 14)
displays the results for the squeezed vacuum; this never shows SPS. Incidentally this
case already illustrates the independence of different signatures of non-classicality, since
guadrature squeezing is present but not SPS. The plots of figuregd) on the other hand
are obtained by varying the phase of one of the displacemejjtskéeping its magnitude
fixed, with the other displacement;] being zero. Different values for the phase of the
non-zero displacement give qualitatively different results; in particular when this phase is

1 Note that the subfigures in each figure are not drawn to the same scale.
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Figure 1. Plots of the invariant Mandel parameté¥(p) for squeezed coherent states as a
function of squeeze parametersandb. (a) The plot for squeezed vacuum, ig. = zp = 0.
(b)-(d) The plots for|z1| = 0, |z2| = 3.0 and the phase af, taking the values 0z /4 andr/2,
respectively.

3, as is clear from figure #l) even some of the essentially single-mode states lying along

a = b show SPS. In figure 2 we choose equal magnitudes of displacements for the two
modes; plots have been generated for different values of their phases. The displacement
parameters in figure 3 are unequal in magnitude; four plots have been given for the same
choices of phase values as in the corresponding plots in figure 2. The qualitative features of
individual plots are similar to the corresponding plots in figure 2 though the actual values
of the invariant Mandel parameter are different.

We now make some general remarks about the results described above. In all the plots
of figures 1, 2 and 3, every point in the regibn> a can be mapped onto a corresponding
unique point in some regiom > b (which in general is not in the same figure), through that
U (2) transformation of the displacementsandz,, which effectively change&© (4, b) to
U (b, a). Whenever the displacement parameters are invariant under this partig@gar
transformation, the plot has a symmetry about the dine b; as in all the plots of figure 1.

Such a symmetry is not exhibited by the plots of figures 2 and 3. In all the plots the invariant
Mandel parameter is zero or negative along the tine b, i.e. for the subset of essentially
single-mode squeezed states. This happens because, even though the choice of displacement
parameters is such that the single mode which is squeezed has super-Poissonian statistics
(Q > 0), the minimization chooses the other mode which is in a coherent @hte 0).

Apart from the case of a squeezed vacuum (figue)14ll other choices of displacement

show SPS for some values of the squeeze parametérsWhen squeezing becomes large

in comparison to the displacement, and we are away from theuliaeb, SPS disappears

and the states tend to become more and more super-Poissonian.
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Figure 2. Plots of the invariant Mandel parametér(p) for squeezed coherent states as a
function of squeeze parametersandb for the case when the magnitudes of the displacements
in the two modes are equalz1| = |z2| = 2.0. The values of the phases af andz; in (a)—(d)

are (0, 0), (0, 7/4), (0, 7/2) and(x/2, /2), respectively.

3.2. The case of squeezed thermal states

We next look at the case of a two-mode isotropic thermal state subjected to squeezing.
The normalized density operator corresponding to the inverse tempefatar@w/ kT is
explicitly U (2) invariant and described in the Fock representation by

po(B) = (1 — e P)? exp[-B(alas + abar)]

=@—eh? 3 e g, no)(n, mol (3.3)
ny,nz=0
with U (2) invariance expressed by
&% po(B)e """ = €% po(B)eT' 7 = po(B). (3.4)

Therefore it suffices to examine the properties of the density operator obtained by
conjugatingpo(8) with 4/© (a, b)

p(B;a,b)y =U(a, b)po(B)U (a, b) ™. (3.5)

In contrast to the previous case, now the covariant Mandel para@éfera, b; g(«))
for the stateo(8; a, b) is calculable by straightforward algebra:

Q(B;a, b; (@) = [ — )21 — &) + 2(1 + %) cosh2a) cosh2b))]
x[1((1 - g2 (21 — €)? + 4(L — &) cosh(2a) cosh2b)
+(1 4 €%)?(cosh4a) + cosh4b)))
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0.1
(bh)
0.05

Figure 3. Plots of the invariant Mandel parametér(p) for squeezed coherent states as a
function of squeeze parametersandb for the case when the magnitudes of the displacements
in the two modes are unequdk;| = 2.0 and|zz| = 4.0. The values of the phases gaf andz;

in (a)—(d) are (0, 0), (0, 7/4), (0, 7/2) and (x/2, = /2), respectively.

+(1+ €°)%(g1” — q2°)(cosh4a) — cosh4b))

114 ¢5% (10— 12¢/ + 10€* + 16(1 — €%) cosh(2a) cosh(2b)

+6(1 + €%)2 coshi4a) cosh4b)))

—2((L+ €")q3(4 — 4€° + 6(1 + €°) cosh2a) cosh(2b)) sinh(2a) sinh(2b))
—21((2—2€’ + 2(-1+ %) cosh2a) cosh(2b))

+((1 + €%)g3 sinh(2a) sinh(2b)))?] (3.6)

heregqi, g2, g3 are the Cartesian componentsgfvith ¢? + ¢3 + ¢2 = 1.

The minimum value of the functio® (8, a, b, g(«)), the paramete© (o (B, a, b)), can
be calculated analytically. The statég, a, b) being the squeezed thermal sta&ealways
super-Poissonian For a given temperature (give$) this super-Poissonian nature is least
for the case when only one mode is squeezed §), increases as the squeezing becomes
increasingly two mode in nature, and finally is maximum when the state is maximally two-
mode squeezed, i.e. when= 0 (b = 0) for a givenb (a). When the temperature is
changed the states with higher temperatures (Ig8yeare more super-Poissonian compared
to the ones at lower temperatures (higigér Thus for fixeda andb, Q(8; a, b) increases
asp decreases. The actual plots@fp (8, a, b)) as a function of:, b are given at different
temperatures in figuret4

1 Note that the subfigures in each figure are not drawn to the same scale.
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Q(p)

(d)

Qlp)

Figure 4. Plots of the invariant Mandel paramet@(p) for squeezed thermal states as a function
of squeeze parametegsandb at different inverse temperature$;takes the values 0.5, 1.0, 2.0
and 4.0 in &)—(d), respectively.

It is interesting to note that the particular mode for which the function
Q(p(B,a, b), g(a)) is minimum turns out to be one of the original modes, corresponding
to g3 = +1. This happens because the thermal state density maf(% is explicitly
U(2) invariant and the representative two-mode squeezing opetéfd¢a, b) can be
factorized into two commuting operators, each pertaining to one of the original modes see
equation (3.1). In general, for a different choice of the representative operators, the minima
could occur at an arbitranfU (2) transformed first mode. All the plots of figure 4 are
symmetric about the line = b because of the explicit/ (2) invariance of the thermal-state
density matrixpo(8) (equation (3.4)).

3.3. The case of superposition of coherent states

Lastly we apply our formalism to the superposition of two two-mode coherent states. In
this case, no squeezing transformati@f® (a, b) is involved. For simplicity we consider
only the case with real displacements.

A general superposition of two two-mode coherent states with real displacements and
a phase difference between them is given by

1 .
[ (ug, uo, v1, v2, 1, 1)) = N(Wla uz) + r explin)|vy, v2))
where

N? =1+ r?+2rcosy exp(—%(uf + u5 + v2 + v3) + ugvy + upv).  (3.7)
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With the help of aU(2) transformation, without any loss of generality we canset 0
and thus it suffices to study only the stat@q(us, u, v1, 0, r, n)). The covariant Mandel
parameterQ (u1, u, v1, , ; g («)) for this superposition of coherent states is given in terms
of the polar coordinate8 and¢ on the surface of the sphere representjngs

Ouy, uz, v1, 7. 7; G(@)) = [Au3 + ul + rPvd + 27 20THEHD vy ) cog(y))] 2

* [(1 +r? 4 267 205H0=0%) cogp))
0\ o\* 0\?
x (4(u‘11 +r?v7) cos(z) + 4uzsin (2> + 8uduy cos<2> cog¢) sin(®)

2
+8u1u3 cog) sin (Z) Sin() + 2u?u3(2 4 cog2¢)) sin(9)2>

+r(e’%(u§+(u1*w)2)(l + r2) + Ze*'é*(lll*vl)zr cosn))
2

o\ 6 _
x <8u§vf cos(z) cos(n) + Buqupv? cos<2> cosn + ¢) sin(d)

+2u3v3 cos(n + 2¢) sin(0)2>
0\? 0\?
- (Z(uf + r?v?) cos<2> + 2u3sin (2) + 2uqup cOS¢) SIN(O)

0\ . 2
+%e‘%<u§+2<“l‘”1>2>r <4u1v1 cos<2> cosgn) + 2uvi co9n + ¢) sm(@))) ]
(3.8)

The minimum values of this function with respect #oand ¢ have been computed
numerically and the results are shown in figure 5. Each plot in this figure contains two
curves showingQd(p) as a function of the relative phagecorresponding to two different
values of relative weight factar. The amount of SPS varies with the relative phase in a
similar way for all the plots. For all parameter values in all plgt6) < 0. This happens
because the most general superposition of two two-mode coherent states can be transformed
with the help of al/ (2) transformation into a product state with one factor being a coherent
state, and the other a superposition of two one-mode coherent states

1 . 1 .
N (luy) + rexplin)|vy))|vy) = NU(S(C)(U))(WL uz) + r expin)|vy, va)). (3.9

Thus if Q(p; @) turns out to be nowhere negative, the minimization chooses Utiaj
transformed mode which is in a coherent state.

It is interesting to point out that for a factorized two-mode state such as the expression
on the left-hand side of equation (3.9), the made)which minimizesQ (p; «) is generally
neither of the two initial modes but a non-trivial combination of them.

4. Concluding remarks

The main aim of this paper has been to develop a specific signature of non-classicality for
two-mode states. Both quadrature squeezing and SPS are well-defined concepts for a single
mode. In this paper we have extended the notion of SPS to two modes by showing how to
choose the appropriate single mode which shows SPS to the maximum extent, considering
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Figure 5. Plots of invariant Mandel parametéx(p) for superposition of two two-mode coherent
states as a function of the phase difference between the two states are shown for two different
values of relative weighty = 0.5 andr = 1.0, and a given set of displacements. Values of
displacements;, u andwv; are (0.5, 0.5, 1.0), (0.5, 1.0, 1.0), (1.5, 1.0, 1.0) and (1.5, 1.0, 0.5)

for (a)—(d), respectively.

all modes related to each other by passiv€?) transformations as equivalent. A similar
treatment of quadrature squeezing has been given elsewhere.

We would like to comment briefly on the role played by the choice of the denominator
of Q(p; a). Any choice which is everywhere non-negative will not change the qualitative
results obtained from the minimization @f(p; @), i.e. the super- or sub-Poissonian nature
of the stateo. However, the extent of SPS, and the location of the most non-classical mode,
depend upon the exact choice one makes for the denominator. To illustrate this point we
choose the two-mode Fock stata, n,). The covariant Mandel parameter is given by

1
Q(n1, ny, §(a)) = TR (—=2(n1 + n2) + (n1 + n2)* + (n1(L — n1) + na(1 — ny))
x(q1° + q2°) — 2(n1 — n2)gs — (n1 + n2)’q3). (4.1)

This function reaches its minimum at = +1 with minimum value— " for n; > n;

ni+nz
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and atgz = —1 with the minimum value- "2 for n, > n;. Thus for ourU (2) invariant

ni+nz
choice of the denominator Ip.Af.A), for a Fock state, the mode with the larger number
of photons is more non-classical. On the other hand if one choosel ecovariant
denominator Tgpa(a)ta(a)), for a Fock state, both the modes are equally non-classical
irrespective of the number of photons present in each mode: the minimum value of this
alternatively defined parameter isl for each mode. However, as explained in section 2,
the choice we have made for the denominator facta {p; «) seems more natural keeping
in mind the kinematic aspects of the problem.

We may emphasize once again that quadrature squeezing and SPS are independent
features of non-classicality, with the possibility in a given statef only one of them
showing up and not the other. In that sense, therefore, the identification of a ‘most non-
classical mode’ definitely depends on whether one is looking at quadrature or amplitude
squeezing, and in general the two may not agree at all. In any case, a complete treatment
of the multimode quadrature squeezing problem, incorporating invariance under all passive
mixing of modes, has been presented elsewhere. The main aim of the present investigation
has been to attempt a treatment of amplitude squeezing in a similar spirit.

For one-mode fields the Mandel parameter can be written as a function of the number
operatorata and hence is determined by (the moments of) the photon number distribution.
In contrast, for two-mode fields the Mandel parameter for $ii&2) transformed mode
cannot be expressed as a function of the number oper@;iofsand aiaz and therefore is
not determined by the photon number distributions in the original modes. There could be
other signatures of non-classicality which are meaningful at the one-mode level and can be
extended in the spirit of this paper to more than one mode. In contrast, it will be interesting
to explore the possibility of having signatures of non-classicality which are not definable
at the one-mode level at all, but are present only at the two-mode level. These will be
presented elsewhere.

Appendix

We give here the functio®(z1, z», a, b; o) for the squeezed coherent state with= u€e?

andz, = vé? . The first term is the denominator, followed by the numerator terms arranged
according to their dependence enand b. First the terms independent af b appear,
followed by the ones depending uperor b alone, and then the ones depending on hoth
andb. The last three terms originate from quadratic expressions of creation and annihilation
operators and are not arranged.

O(a; 21, 22, a, b) = 2[—2 + cosh2(a — b)) + 2u® cosh2(a — b)) + cosh2(a + b))
+2v?cosh2(a + b)) + 2u? coq2¢,) sinh(2(a — b))
+2v2 €0 2¢,) SiNN(2(a + b))]

x | a6+ u® + v+ 2 4+ v?) + §(v* cog4yp,) (—1+ cog6)))

+3(W® —v®) (2 + u® + v?) cog0)) — §(u* cos4e,)(1+ cogh)))
—i6((L 4+ u?2+ u® — u® cos4p,)) + v*(2+ v? — v cod4p,))) Sin6)?)
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—8c0og¢) cosp, — @) — 2+ u? +v?
1 +(u? — v?) cog0)) sin(@) sin(e, — ¢,) ,
+y | wvcosti2a) ( —u2(1 + cog6)) sin(¢) sin(3p, + v, )) sin(®)
+v2(1 — cog6)) sin(®) sin(g, + 3¢,)
_8 CO{‘/J)) COS(% + %)
1 —W? —v2+ 2+ u? + v?) cog0))
+- | uv x Sin(¢) sin(y, + ¢,) sin(@) sinh(2a)
4 —v2(1 — cosh)) sin(@) sing, — 3¢,)
—u?(1+ cog96)) sin(e) sin(3p, — ¢,)
8sin(¢) sin(e, — ¢,) sin(9)
1 + CZO§¢)200$§20” - gozu) )
X (24 u®+ v°+ (u® — v°) cog0))
T [#r oS | cogg)2u? cos3p, + ¢,) cog5)?
—2v2 cog) cop, + 3py)
x sin($)? sin(6)
v2cog¢) cogp, — 3¢,)(—1+ cogh))
1 +u? cos¢) cos3p, — ¢,)(1+ coKH))
+Z uv | —cos¢) cosy, + ¢,)u? —v? sin(@) sinh(—2b)
+(2 + u? 4+ v?) cog8))

-8 SW‘(‘P) Sin(ﬁou + (pv)

4
+2(3+ 124% + 6u” + 2u* cos49,)) cos(i) cosh4(a — b))

4
+2(34 120 + 6v* + 2v* cog4g,)) cosh4(a + b)) sin (Z)

4
+% <u2(3 + 2u?) co92¢,) cos(i) sinh(4(a — b)))

4
+% (v2(3 + 2v%) cog2¢,) sin <z) sinh(4(a + b))>

2
+ cosh2(a — b))( - ((1 + 2u?) cos(i) )

N u?v? cog2¢,) sin(2¢) sin(2¢,) sin(9)2>
2

2
+cosh2(a — b))( - ((1 + 2v?) sin (g) )

B u?v? cog2¢,) Sin(2¢) Sin(2¢,) sin(9)2)

2

(1 + 2u?)v? sin(2¢) sin(2¢,) sin(9)2>

+ (—(u2 coq2¢,) (1 + cogh))) + 4

x sinh(2(a — b))

2 o , o
n (1)2 c0820,)(—1 + cog0)) — " (1+2v )sm(ZZS) sin(2¢, ) sin(9) >
x sinh(2(a — b))

+3 (L + 2% (1 + 2v°) + 2u*v® cog2¢) cos2p,)
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x €092¢,)) cosh2(a — b)) cosh2(a — b)) sin(©)?)

+ 2 ((4u*(1+ 2v%) €09 2¢,) + 2(1 + 2u?)v? co2¢) COY2¢,))
x cosh2(a — b)) sin(®)? sinh(2(a — b)))

+ (1 + 2u®) (1 + 2v®) cog2¢) + 8u*v? O 2¢,) CO2p,))
x sin(®)? sinh(2(a — b)) sinh(2(a — b)))

+3((2u*(1 + 2v%) cog2¢) 08 2¢,) + 4(1 + 2u*)v* co2p,))
x cosh2(a — b)) sin0)? sinh(2(a — b)))

1
+5 (uv cos¢) (3(L + u?) cosp, — ¢,) + u” co3p, + ¢,))
0 2
X cos(z) cosh2(2a — b)) sin(@))
+% (uv cos(¢) (u? cox3p, — @) + 3(L+ u?) codg, + ¢,))
0 2
X cos<2> sin(@) sinh(2(2a — b)))
1
+5 (uv cog(¢)(3(1 + v?) cosip, — @,) + v cosp, + 3¢,))
0 2
x c0sh2(2a + b)) sin <2> sin(e))
1
+5 (uv cos(¢) (v* coslg, — 3p,) + 3(1 + v?) O, + @,))
0 2
x sin (2> sin(@) sinh(2(2a + b))>
1 0\ . -
+é (MU COS<2) s'”(d))(_(u SIn(3(pu - (pv))
+3(1 + u?) sin(g, + ¢,)) sin@®) sinh(2(a — 2b))>
1
+5 (uv sin(¢) (v?sin(g, — 3¢,) + 3(1 4 v?) sin(g, + ¢,))
0 2
x sin (2) sin(@) sinh(—2(a + 2b))>
—% (uv cosh(—2(a + 2b)) sin(¢)(3(1 + v?) sin(, — ¢,)
0 2
+v2sin(g, + 3¢,)) sin (2> sin(e))
1 0\ .
+§ (uv cos(2> cosh(2(a — 2b)) sin(¢)

x (=3(1 4 u?) sin(g, — ¢,) + u?sin(3p, + ¢,)) sin(9)>
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+ 3 W?v? cog2¢) sin(2¢,) sin(2p,)sin@)?) — [— 1

2
N (1 + cog6))((1 + 2u?) cosh2(a — b)) + 2u?cos2¢,) sinh(2(a — b)))}
4
N (1 — co96))((1+ 2v?) cosh2(a — b)) + 2v? cog2¢,) sinh(2(a — b)))
4

2

sin(¢) (cosh—2b) sin(p, — ¢.)
—sin(g, + ¢,) sinh(—2b))

+ cog¢)(cos¢, — ¢,) cosh(2a)
+cos(g, + ¢y) Sinh(2a))

+ uv sin(®) (A1)
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